
On the Use of UML Documentation in Software

Maintenance: Results from a Survey in Industry

Ana M. Fernández-Sáez

Institute of Technologies and Information Systems,

University of Castilla-La Mancha

Ciudad Real, Spain

anamaria.fernandez.saez@gmail.com

DaniloCaivano

Department of Informatics, University of Bari,

Bari, Italy

caivano@di.uniba.it

Marcela Genero

Institute of Technologies and Information Systems,

University of Castilla-La Mancha

Ciudad Real, Spain

marcela.genero @uclm.es

Michel R.V. Chaudron

Joint Computer Science and Engineering Department,

Chalmers University of Tech. & University of Gothenburg,

Gothenburg, Sweden

chaudron@chalmers.se

Abstract—This paper presents the findings of a survey on the

use of UML in software maintenance, carried out with 178

professionals working on software maintenance projects in 12

different countries. As part of long-term research we are

carrying out to investigate the benefits of using UML in software

maintenance, the main objectives of this survey are: 1) to explore

whether UML diagrams are being used in software industry

maintenance projects; 2) to see what UML diagrams are the most

effective for software maintenance; 3) to find out what the

perceived benefits of using UML diagrams are; and 4) to

contextualize the kind of companies that use UML

documentation in software maintenance. Some complementary

results based on the way the documentation is used (whether it is

UML-based or not) during software maintenance are also

presented.

IndexTerms—UML, Software Maintenance, Survey.

I. INTRODUCTION

UML [1] has become the de facto standard modeling

notation used as a graphical notation to complement software

documentation. It would therefore be useful for the software

industry to study whether or not the use of UML benefits

software maintenance, particularly because any type of

investment must be justified from an economic point of view;

i.e., there should be a payback at a later phase. In the context of

software projects, investment in modelling should thus be

justified by benefits (such as improved productivity and better

product quality) that can be gained later, during software

development or maintenance.

To the best of our knowledge, there are only three empirical

studies on the impact of UML documentation on software

maintenance in industry. Dzidek et al. [2] presented an

experiment using 20 professional developers as subjects.

Scanniello et al. [3] showed the results of an exploratory survey

to investigate the state of the practice regarding the use of

UML in software development and maintenance, with 22

employees at Italian companies. Fernández-Sáez et al.

[4]presented an industrial case study performed in a large ICT

(Information and communication technologies) department, in

which 20 ICT professionals were interviewed. Their aim study

was to investigate the use of UML diagrams during software

maintenance. Summing up the results of these 3 studies, it

would appear that this notation is frequently used, at least in

Italy. This might be because using UML during maintenance

seems to be beneficial in terms of software quality, even

though no time is saved.

Although there is some encouraging evidence concerning

the benefits of using UML during software maintenance in

industry, it is scarce and based on a small population. It would

therefore be useful to go one step further and collect a larger

population of evidence from industry. Case studies in industrial

contexts typically take a long time; it is difficult to obtain a

large population of projects in industry that provide appropriate

data. We have therefore attempted to bridge this gap by

carrying out a survey of 178 ICT professionals from 12

countries (across the globe); that survey will be presented in

this work as a first approach to the status of the current

industrial environments. We decided to use this method

because surveys are well-established social science techniques

that can be used to gather information and opinions from a

large population known to be representative of a target

population [5]. Online-surveys may have some limitations,

such as sampling bias and difficulties in designing clear,

unbiased and unambiguous questionnaire items. But we have

attempted to mitigate these as far as possible, by involving

external researchers and some employees in the review and

improvement of the experimental material, and by taking into

account similar studies in the software engineering community.

The main goal of this survey is to address the following

research questions (RQs):

 RQ1: Is UML documentation used to support software

maintenance in industry?

 RQ2: What are the perceived benefits of using UML during

software maintenance?

 RQ3: What kinds of companies use UML documentation

during software maintenance?

978-1-4673-6907-7/15/$31.00 c© 2015 IEEE MODELS 2015, Ottawa, ON, Canada
Foundations

52

292

mailto:anamaria.fernandez.saez@gmail.com
mailto:caivano@di.uniba.it
mailto:chaudron@chalmers.se

 RQ4: What subset of UML diagram types has been

demonstrated to be most effective during software

maintenance?

The remainder of the paper is organized as follows: Section

II describes the main steps of the survey design, while the

results of the survey are presented in Section III. The threats to

validity are set out in Section IV. Finally, our conclusions and

future work are presented in Section V.

II. SURVEY DESCRIPTION

The survey was designed and reported by following the

recommendations provided in [6].

A. Goal and Research Questions

The main goal of this survey is to address the RQs

presented in Section I.

B. Target Population, Sample Identification and Recruitment

Strategy

Our target population consisted of practitioners who have

worked on maintenance projects, whether or not they have used

UML. We considered ICT companies that develop, maintain or

sell software as a principal part of their business, or companies

focused on other business but with a large ICT department. The

selection of the companies (sampling) was conducted by using

the network contacts of the research groups of the authors of

this paper who conducted the survey. Each author defined his

or her own list of contacts, which included:

 employees at companies involved in research projects with

the authors’ universities, or that host students from the

authors’ universities for internships or thesis projects;

 the authors’ former students, now employed at software

companies;

 researchers from other universities with whom the authors

have collaborated;

 people from professional networks or companies included

in public-private research of which the authors’ universities

are members.

Upon receiving a filled-in survey, we asked the respondent

to provide us with more contacts. A single list of 585 contacts

was eventually obtained and used to distribute the survey. We

also advertized the survey in software maintenance

communities on the Internet, on sites such as the International

Software Engineering Research Network, (which is for people

who follow the International Conference on Software

Maintenance), or the site of Software Maintenance and

Reengineering.

C. Survey Structure

The survey was structured in blocks which grouped the

questions into four topics:

1. Demographic information: this refers to information about

the person replying such as: gender, educational

qualifications, country in which they work, role in the

company, experience in ICT and experience in software

maintenance. This block of 7 questions helped us to

contextualize the responses obtained.

2. Organizational information: the objective was to

characterize the respondent’s company. In particular, we

collected information concerning: the size of the ICT

department, stability of the maintenance team, or whether

the company is geo-distributed or co-located. This block

contained 6 questions designed to answer part of RQ3.

3. Project information: this refers to information regarding the

most typical projects carried out in the company. The block

included questions related to items such as: size of systems

maintained, size of maintenance teams or type of

maintenance carried out, and contained 4 questions related

to RQ3. It is important to define the types of maintenance

mentioned in this paper. They were divided into the

following categories [7]: 1) Corrective maintenance tasks,

i.e., those related to fixing a bug, 2) Adaptive maintenance

tasks, i.e., those related to the changes made to the

hardware/software platform, interface or requirement in

order to improve performance or conform better to the law,

or changes in the operative context; and 3) Evolutive

maintenance tasks, i.e., those related to the development of

new functionalities or functional/technical requirements

requested by a customer.

4. Process information: this consisted of questions in which

we asked whether the respondents create UML during

software development, and if so, of what type; we also

asked about their use during software maintenance. This

block contained 11 questions related to RQ1, RQ2 and

RQ4.

D. Survey Design

To address the research questions formulated, we drew up a

survey consisting of 4 blocks of questions, with 28questions in

all. Some questions were not presented to all individuals, as

they were determined by the responses provided to other

questions (i.e., conditional ones). Each person therefore

answered a maximum of 22 questions. The electronic copy of

the survey and the questionnaire flow is available online at:

http://alarcos.esi.uclm.es/ShortSurvey-UML-Maintenance/

Most of the questions were measured using Likert scales,

and a few others were measured with nominal scales, but they

were all closed questions. Some of them also included a space

for extra information, however. To avoid bias, the questions

were ordered in such a way that the answer to one question

would not affect the answers to the following ones. Though

originally designed in English, Spanish and Italian versions

were also used.

E. Survey Construction and Execution

The procedure followed consisted of the following steps:

1. An initial set of questions was selected by using similar

surveys (such as those in [8], [9]) as a basis and tailoring

them to our goals. A list of possible contacts was created by

following the recruitment strategy explained above.

2. A pilot study with five industrial ICT professionals from an

Italian company was performed before the survey was

made available online. This was to refine it and to reduce

any ambiguities, and minor changes were then made to the

survey.

293

3. The survey was online from February to April of 2013,

using Survey Monkey [10].

4. Contacts were invited (via email or phone) to participate the

study. A reminder was sent to those who had committed to

completing the survey, but who had not returned it by the

end of March.

5. After the surveys had been collected, analyses were

performed, aiming to answer the research questions. Data

analysis was based on a quantitative analysis focusing

mainly on descriptive statistics and percentages of the

information collected.

III. RESULTS

A total of 268 ICT practitioners of the 585 directly

contacted showed interest in responding to the survey. We

filtered some of these, because, although they were interested

in collaborating, they did not have the profile intended for this

survey; i.e., they did not work in software maintenance. In the

end, 178 responded to the survey during the two months it was

online. This result is significant because of the difficulty

normally involved in obtaining such a large quantity of

individuals suitable for making up a target population.

Importantly, no money or other incentives were given to the

respondents, making the very high number of responses for a

study of these characteristics in ICT environments even more

surprising. We cannot state how many different companies

these 178 people represent, as for reasons of privacy we did not

ask the respondents to indicate their company. Please bear in

mind that the responses to all the questions, summarized in the

following subsections, do not add up to 178 in all cases, since

some people did not answer all the questions(because of some

conditional questions).

A. Overview and Descriptive Statistics

When analyzing the demographic information from the

survey, we attempted to describe the respondents’ profiles.

78% of them (139) were male and 22% were female (39),

which was the proportion expected based on our personal

perception of typical proportions for ICT. The countries in

which the participants work are very varied: Afghanistan (1),

Algeria (1), Austria (2), Canada (1), China (4), Finland (1),

India (2), Italy (110), Mexico (1), Netherlands (18), Spain (23)

and Uruguay (14).

The majority of those taking part have a high educational

level with a Master’s Degree (43%), or a medium high level

with a Bachelor’s Degree (33%); 4% have a researcher profile

(they have PhD studies) and 17% have high school studies

only. These percentages allow us to state that the sector is

mature in terms of skilled professionals.

In terms of experience, the majority of the respondents

(71%) are experienced professionals with more than 5 years in

the area of ICT, and only 2% have less than 1 year of

experience in this field. The other 26% of the survey

participants possess between 1 and 5 years of experience. If we

focus on experience in the field of software maintenance, then

the percentages change: over half the respondents have more

than 5 years of experience; only 6% have less than 1 year. The

results lead us to assume that some experience is needed in the

ICT field in general before working in the software

maintenance field. This may be due to the need to have

sufficient experience in understanding how systems are built

before being able to modify them. We could have excluded

those respondents who did not have very much experience in

software maintenance; we decided against this, in order to

obtain a real representation of industrial workers. The role most

frequently played by the participants is that of

programmer/coder (34%), followed by software analyst (19%),

and project manager (15%). The remaining roles (business

analyst, designer, software architects, software testers, etc.) are

performed by less than 8% each. 66% of the respondents are

currently working on software maintenance, while the others

(34%) have worked on it in the past. In most cases (61%), those

who replied perform maintenance on software which was

developed by the same company, as against the 37% who

maintain software developed by third parties.

The demographic results are consistent with those found in

[11], i.e., most UML users are highly-educated and

experienced. They also play a variety of roles, but most of them

are software developers.

If we filter out those who do or do not use UML diagrams

during software maintenance by role (Fig.1), we can state that

the roles that use UML diagrams most frequently are software

architects (as expected, because they create them), followed by

software analysts and project managers. Project managers may

be UML consumers [13]. Those who use UML diagrams least

are business analysts, software testers and maintenance

engineers. It is sometimes difficult to know whether

programmers use the UML diagrams provided by the architects

(to “measure” whether the investment of creating the UML

diagrams provides any kind of payback). We would therefore

like to stress that almost one third (27%) of the programmers

use UML diagrams for software maintenance tasks.

Fig.1. Use of UML diagrams during software maintenance per role

We classified the people who do or do not use UML

diagrams during software maintenance by educational level

(Fig.2). It “seems” that a higher educational level leads to a

greater use of UML diagrams (except in the case of PhD

students, who may have specialized in topics that are very

unlike software modeling). This assumption was made after

discarding the results of those groups with low

representativeness, due to their low generalizability.

294

Fig.2. Use of UML diagrams during software maintenance by

educational level

The results obtained in answer to the research questions

formulated are presented below.

B. RQ1: Is UML Documentation Used to Support Software

Maintenance in Industry?

We asked the respondents about what type of

documentation they use during software maintenance. The

majority use artifacts that are based on textual documentation

(66%) and on the source code by itself (70%), but 40% of those

surveyed use a graphical notation (26% use only UML,9%

another notation), to support the design of the changes related

to software maintenance tasks. This means that, when a

graphical notation is used, UML is used in 72% of the cases in

comparison to other notations. This is more or less the same

proportion as in the results obtained by Hutchinson et al. [12]

in their survey regarding MDD (Model Driven Development)

and the different notations used for it. The percentage of UML

use obtained is also similar to that in the results obtained by M.

Petre [13] in her study on the use of UML (in general, not only

focusing on maintenance). But these two results are contrary to

the results obtained by Scanniello et al. [20], which reveal that

75% of the respondents (all from Italian companies) use UML.

As stated previously, 20 respondents (9%) use a different

graphical notation (like those in the results obtained in [8]).

There are also 8 respondents (5%) who use a combination of

UML and other graphical notations. This reinforces the results

obtained by Hutchinson et al. [12], i.e., the use of different

notations is not an unusual practice, because most notations are

not selective. The other graphical notations used are the

following: BPMN, E/R, SysML, FSP-SPEM, database designs,

Archimate, screenshots or domain specific languages, but the

majority does not use formalized notations ("boxes and

arrows"). Most of them coincide with the languages mentioned

in the survey of Hutchinson et al. [12].

Those who do not use any graphical notation but who do

employ textual documentation represent 33% of the

respondents. 14% do not use any complementary

documentation (graphical or textual) to maintain source code,

i.e., they only employ the source code as documentation. This

is surprising, since it is additional information to the source

code and requires an extra investment for its creation. But

source code and its comments are the most important artifacts

for understanding a system that is to be maintained [14].

 From here on we shall use the terms “UML group” for

those who stated they have UML diagrams available as part of

their maintenance documentation, and “non-UML group” for

those who do not have UML diagrams in their documentation.

We asked the UML group how often they do not consult

software documentation and work directly with source code

(Table 1).

Table 1. Frequency of use of source code only

 Never Some-

times

Often Very

often

Always

UML

group
4 22 20 2 1

Non-

UML

group

8 37 43 17 8

Those who indicated they never discard the UML diagrams

to work directly with source code form 8% of the UML group.

It may be that they do not use source code because of their

roles: project managers, software analysts, designers and

software architects.

Almost half of the UML group (45%) do not always consult

the documentation, and work directly with source code. They

justified this way of working ideas as follows:

 There is no documentation in the project.

 Documentation does not always describe the observed

behavior of the application.

 It is a useful way to handle defects.

 Source code is always the most reliable documentation.

 When the UML diagrams are created a posteriori (legacy

systems) they do not have enough detail.

 UML is not useful when the maintenance task needed is an

evolutive task of the system with low impact on the rest of

it.

Those who often discard the documentation and work directly

with source code (41%) do so when:

 The software maintenance task is small, and it is faster to

do it directly in the source (doc. is not needed).

 The system under maintenance is well-known by

maintainers. It is recognized that the documentation is not

aligned with the source code.

 There is a lack of time.

In the case of the non-UML group (Table 1), 7% indicated

that they never discard the documentation to work directly with

source code.

33% of the non-UML group do not always consult the

documentation and work directly with source code. They

discard documentation, for the following reasons:

 Sometimes source code is self-explanatory. When the

system concerned is very old, the documentation may very

well no longer describe the current situation.

 Code sometimes contains more details than

documentation.

 Documentation is not necessary for testing.

295

 There is a lack of tooling for the synchronized updating of

source code and documentation.

Those who discard the documentation and directly use

source code more often (53%) do so because:

 The documentation documents are very long. The

documentation is not properly structured, or not very

accessible (parts in emails, for example).

 There is a good deal of knowledge embedded in source

code which is not present in the documentation.

 Systems are well-known.

 Documentation might be not updated (only when the

customer requires it).

 Documentation does not exist in some cases (especially in

legacy systems).

 The maintenance tasks are small or corrective.

 Time pressure exists.

C. RQ2: What Are the Perceived Benefits of Using UML

During Software Maintenance?

The UML group was asked why they use UML diagrams.

Some possible reasons were presented to them.

The majority of the UML group (55%) believes that the

UML based diagram documentation provides added value for

software comprehension and defect detection. One recurrent

argument (41%) for using UML is the idea that UML based

diagram documentation reduces the time needed for software

comprehension and defect detection.

Some of them (31%) also think that UML based diagram

documentation outperforms the other available standards,

diagrams and models. There are also a few (29%) that use it

because it has been adopted by their companies, i.e., they are

“forced” to do so. A subset of survey respondents (27%) thinks

that the UML based diagram documentation reduces

maintenance costs.

A minority (8%) use UML because they do not know of any

other alternatives. Some of them (8%) also justified the use of

UML as follows:

 It is a standard, i.e., it is not ambiguous.

 It is familiar for most developers.

 It is an easy communication model that makes it easier to

review the development activity.

 It is easy to understand for technical and non-technical

people, because it has different views.

The non-UML group was similarly asked why they do not

use UML:

The option chosen most frequently was “I have to use the

standards, diagrams and models adopted by my company”

(33%). The next reason for not using UML is because the non-

UML group prefers working directly with source code (23%).

This percentage is double that obtained in the survey of

Scanniello et al. [3]. On the other hand, 17% of the non-UML

group believes that time spent on UML diagram

comprehension is not compensated by the benefits of using

UML. This percentage is much lower than the 50% of people

surveyed in [15] who excused their non-use of modeling by

saying that models require too much effort.

Finally, it is strange that some of those responding do not

use UML simply because they are not familiar with it (14%).

These data coincide with the results of [8] and [16]. Similarly,

10% of non-UML group believes that the UML based diagram

documentation does not add enough value to software

comprehension.

A minority (2%) thinks that the standards, diagrams and

models used in their companies are better than UML based

diagram documentation. Some of them (18%) also argued for

the non-use of UML, giving the following reasons:

 It is difficult to manage versions of diagrams. This

contradicts the results obtained in [12], in which it was

claimed that 50% of companies used versioning tools for

modeling (in the context of MDD).

 Legacy systems do not usually have UML diagrams in their

documentation.

 UML diagrams are not usually maintained.

 Final customers do not like UML diagrams.

 There is minimal use of documentation, in general.

 When the development starts, the requirements are unclear.

 Diagrams are used for personal purposes but not stored as

documentation.

When the questionnaire was created, we took into account

that one of the responses to the previous question might be that

maintainers use software documentation (containing UML

diagrams, or text or other graphical notations) only

infrequently. We thought that the effort of consulting the

UML/documentation might be great, thanks to that low rate of

use. A question about this was therefore added to the

questionnaire (Table 2).

For the UML group, the effort of consulting the UML

diagrams is almost always less than 20% of the total effort

made to maintain the system (only 16% of the UML group

disagreed with this statement). For the non-UML group, the

proportion of those who spent more than 20% of the effort in

consulting the documentation is slightly lower. This is because

over 1/4 of them use more effort in consulting the

documentation, and it may explain why more maintainers in

the non-UML group than in the UML group do not use the

documentation.

Table 2.Effort of consulting UML diagrams for UML users, and

effort of consulting documentation for non UML group

 <10% 11%-

20%

21%-

30%

31%-

40%

>40%

UML

group
22 19 7 0 1

Non-

UML

group

46 38 20 3 6

D. RQ3: What Kinds of Companies Use UML Documentation

During Software Maintenance?

A “Company” is the final result of several factors, such as

organization type, dimension, business domain, type of projects

carried out and processes in use. In the survey we attempted to

296

investigate each of these aspects with a set of focused

questions.

We asked those surveyed whether UML use is closely tied

to the software development methodology used for software

maintenance, to discover if this is indeed the case (Fig.3).

Fig.3. Use of UML diagrams by software development methodology

Only when the development methodology is RUP–like are

there more respondents from the UML group than the non-

UML group (rate of 2). This proportion was expected, given

the particularities of this development process. On the other

hand, when following waterfall methodologies or Product Line

developments, the proportion of UML users falls drastically

(rate of 0.57 and 0.25, respectively).

In the case of other methodologies, namely agile

approaches, Prince2, ISO/IEC 29110, MoProSoft, ITIL V3,

Polarion, ASAP (SAP), Spiral, there is one UML user per each

3 maintainers.

Some of those taking part also mentioned that they use one

or more of their own methodologies, depending on the project.

The modeling tool used to maintain/modify the UML

diagrams is an important factor when deciding whether to use

an UML based software development process. There are

different types of tools with different benefits: licensed tools

(which implies an investment but also payback with possible

training, customizations, etc.) vs. open tools, or specific tools

for modeling in UML (which check the correctness of syntax)

or general modeling tools (these are more “accessible”).

24% of the UML group does not use a modeling tool: 2%

because they manage diagrams on physical paper or

blackboards and the diagrams are not digitalized, while the rest

(22%) do not manage diagrams because they are not modifiable

images (.jpg, .bmp, .pdf, etc.). This is a higher percentage than

that obtained in [8], whose results revealed that only 6.4% used

modeling tools.

The 73% UML group, which uses tools to modify the UML

diagrams, might do so using a single tool, or have more than

one available for the same purpose.

It is quite surprising that one of the most frequently-used

tools is Microsoft Office Visio (29%), which is non-specific to

UML design. It is true that it contains a toolbar for UML

design, but it does not check the basic correctness of the UML

diagram, i.e., the syntax is not checked. The tool thus allows

any element to be connected with another one, or even

elements from one diagram to be introduced in another (for

example, actors in a class diagram). One reason for the frequent

use of this tool might be that a lot of companies work with it

for other purposes; employees already have the tool installed,

making it easier to use it and to share diagrams.

Enterprise Architect, which is a very comprehensive

licensed tool, has the same percentage of use (29%). It contains

the option of producing Reverse Engineering (RE) UML

diagrams, compared to the next most widely-used tool, which

is the open tool StarUML (14%). Others mentioned are (with

2% to 7% each): Rational Rose, ArgoUML, IBM Software

Architect, DIA, Visual Studio, Gliffy and UML designer (a

plugin for Eclipse).

One of the purposes of using UML diagrams is to improve

communication between stakeholders [4], [19]. When a

company is geo-distributed, this factor becomes critical. In both

cases, fewer companies use UML during maintenance,

regardless of their locations. The proportion of companies that

use UML diagrams is, surprisingly, a little higher (9% extra)

for those companies that are geo-distributed in comparison to

those that are co-located (Table 3). This could be because co-

located teams are more standardized as regards development

methods and tools.

It is also worth noting that 83% of the respondents belong

to geo-distributed companies. But how often is the maintenance

team geo-distributed? Half of the participants work in

maintenance teams that are geo-distributed, while the other half

are in co-located teams (Table 4). We see, however, that the

proportion of UML use is slightly lower (9% less) in the case

of co-located maintenance teams.

Table 3. Relationship between geo-distribution of companies and use

of UML in software maintenance

 Geo-distributed

company

Co-located

company

 # respon-

dents

(in total)

%

respon-

dents

(in total)

%

Use UML in

maintenance

40 28% 21 37%

Do not use

UML in

maintenance

105 72% 60 63%

Table 4. Relationship between geo-distribution of the maintenance

teams and use of UML in software maintenance

 Geo-distributed

maintenance team

Single-site

Maintenance

team

 # respon-

dents

(in total)

%

respon-

dents

(in total)

%

Use UML in

maintenance

30 35% 21 26

%

Do not use

UML in

maintenance

56 65% 60 74

%

297

We also studied the influence of company size on the use of

UML diagrams. We measured the size of companies, using

their number of employees. The majority of those responding

(66%) belong to very large companies, with more than 250

employees. Large companies (with 50 to 250 employees) use a

higher proportion (40%) of UML diagrams than those of other

sizes (Fig.4). In the rest of the categories, the use is less than

30%.

Fig.4. Relationship between size of company and use of UML in

software maintenance.

We then looked into the influence of the size of the ICT

departments on the use of UML (see Table 5). Companies with

small ICT departments, i.e., with fewer than 10 employees, use

fewer UML diagrams (around 16%) than bigger ICT

departments (from 26% to 39%). This was as expected, since

one of the main reasons for using UML diagrams is

communication between team members; there is expected to be

less need for codified design knowledge in small ICT

departments.

Table 5.Relationship between size of ICT department and use of

UML in software maintenance.

 <10 [10-

50)

[50-

250]

> 250

Use UML in

maintenance

3

(16%)

10

(38%)

12

(39%)

26

(26%)

Do not use UML

in maintenance

16

(84%)

16

(62%)

19

(61%)

73

(74%)

Focusing on team size (Table 6), we considered small teams

to be those with fewer than 3 people, medium to be those with

between 5 and 9 people, large to be those with 10 to 49 people,

and very large to be those with 50 or more people. The

majority of the respondents work in small (44%) or medium

(35%) sized teams. Team size does not appear to be an

influential factor in the use of UML during software

maintenance. It is also important to note that, although the ICT

departments are very large, team size does not tend to be

correspondingly large. This is why there are more respondents

from small teams than from large ones. What is more, small

teams use fewer UML diagrams than large ones, because they

have facilities for face-to-face meetings, and so need less

supporting documentation.

The type of maintenance team was also studied. In most

cases (80%) the respondents belong to stable maintenance

teams whose objective is to directly develop or maintain

software. In the remaining cases (20%), the team was created

when needed. Team stability does not seem to be an influential

factor in the use of UML; the proportion is the same for both

kinds of teams (29%).

Table 6.Relationship between team size and use of UML in software

maintenance.

 Small Med. Big Very

Big

Use UML in

maintenance

25

(33%)

14

(24%)

9

(35%)

3

(50%)

Do not use UML

in maintenance

51

(67%)

45

(76%)

17

(65%)

3

(50%)

With regard to the size of the systems maintained, these are

classified depending on their number of Lines of Code (LoC).

A small system is one with fewer than 10,000 LoC (10% of

respondents); a medium system has between 10,000 and

100,000 LoC (38%); a large system might have between

100,000 and 500,000 LoC (33%), while a very large system

would have more than 500,000 LoC (19%) [3]. A higher use of

UML diagrams was expected in projects that maintain larger

systems. One of the reasons put forward for using UML (or

models) is that it helps manage large and/or complicated

systems. The results obtained show that UML diagrams gain

popularity when the team has to maintain a very large system

(Table 7), but differences are not too great (from 20% to 39%).

Table 7. Relationship between size of system maintained and use of

UML in software maintenance

 Small Medium Big Very

Big

Use UML in

maintenance

4

(29%)

19

(31%)

18

(33%)

10

(39%)

Do not use UML

in maintenance

10

(71%)

43

(69%)

37

(67%)

26

(61%)

The type of maintenance most often performed is evolutive,

since 82% of the respondents do it frequently (i.e., 60 often, 59

very often or 27 always), followed by corrective tasks. The

adaptive maintenance tasks are done less often (33% of the

respondents never do so, or do so rarely). These results are

similar to those obtained by Souza et al. [14], who state that the

most frequently-used maintenance is evolutive.

We studied whether the business sector type of the

company influences the use of UML during maintenance. The

categories used to classify companies by business sector were

the following: Finance (0% of respondents);

Telecommunications (2%); Manufacturing (3%); Service

Provider (22%); SW Development, Maintenance and Service

(69%); or other sectors (4%). Other sectors included education,

medicine, or humanitarian companies. If we focus on those

respondents who belong to “Software companies”, 35% use

UML. As expected, there are other sectors not directly

dedicated to software development (they create software as a

resource for their companies, but their main business focus is

on other items) that do not seem to use UML diagrams. In

298

contrast, a low proportion (13%) of those working in the

“Service Provider” sector uses UML diagrams in maintenance,

while 40% of those employed in “Manufacturing” companies

use the UML diagrams. It is surprising that companies not

directly dedicated to software development use UML diagrams

(13% of Service Providers, and 40% of Manufacturing

Companies surveyed, although these percentages are calculated

based on low representativeness).This implies that UML is

being used not only in the context of software factories.

Fig.5. Relationship between role of software in the company and use

of UML in software maintenance.

More than half the respondents (66%) are employees of

companies in which the company’s business is the software

itself; i.e., they work in ICT companies (Fig.5). Another large

percentage of the participants (36%) work for companies in

which the software is a strategic resource to support their

business, but they focus on producing other kinds of products,

or on providing other kinds of services. Only 5 respondents

(3%) worked for companies in which software is a marginal

element. The percentage of UML usage is higher in the case of

those companies in which the software is the main business

element (33%), compared to those in which the software is a

supporting element for the company’s business (24%).

E. RQ4: Which Subset of UML Diagram Types Has Been

Demonstrated to Be Most Widely-Used and Effective

During Software Maintenance?

The UML diagrams that are most frequently used during

software maintenance (Fig.6) are class diagrams (61% of UML

group), use case diagrams (45%), sequence diagrams (41%)

and activity diagrams (33%). These results are similar to those

of other surveys ([8], [11], [12], [17])in which class, activity,

use case and sequence diagrams are part of the top 4 UML

diagrams used. The diagrams used least are the collaboration

diagrams (perhaps because they are equivalent to sequence

diagrams), composite structure diagrams, interaction view

diagrams and timing diagrams (all of which are UML 2.0

diagrams and less well known).

The origin of the UML diagrams is usually the development

phase (94%); i.e., they are not created specially during the

maintenance, except where UML diagrams are not available

from the software development; then they are created

specifically during maintenance (3 respondents; 6%). It is also

quite surprising that 34 of those replying (44%) said that UML

diagrams are available from the development phase, but that

they do not use them during software maintenance at all. This

might be the result of a divergence between the diagrams and

the source code.

Fig.6. UML diagrams used during software maintenance.

The UML diagrams produced during SW development are

summarized in Fig.7. Curiously, some survey respondents (7)

considered UML diagrams to be other types of diagrams, such

as: Business Process Models, Data models, DDL, Test case,

Navigation diagrams, and user interface prototypes. It does not

therefore appear to be clear which are UML diagrams and

which are not.

When the UML diagrams are created expressly for the

maintenance tasks, two approaches might be followed: 1) the

diagrams could be human-based diagrams, i.e., they are created

manually using a forward design approach, and 2) they could

also be machine-based diagrams, i.e., the diagrams are created

automatically by software using a Reverse Engineering (RE)

technique.

Fig.7. UML diagrams created during software development

If the responses from those who do not know the origin of

the UML diagrams (3%) are discarded, the majority of the

UML groups use human-based diagrams (81%). Of the rest,

those who use UML diagrams generated using any tool with a

RE technique, 3% use pure RE diagrams (completely automatic

UML diagrams). 19% employ RE UML diagrams reviewed by

humans (which could be considered as semiautomatic

diagrams). In relation to this, the results of [18] show a

299

tendency toward better results being obtained when using UML

diagrams (class diagrams, specifically) that were hand-made

during the design phase. The results from [18] also revealed

that maintainers using RE diagrams experienced more

difficulties when reading the diagrams. Most companies

surveyed therefore use the “more understandable” UML

diagrams. Maintainers do not always employ the available

documentation and work directly with the source code; even if

the documentation is available, it is not used.

IV. THREATS TO VALIDITY

We shall now analyze the main potential threats to the

validity of the survey presented here:

Internal validity: the main issues affecting the internal

validity of our study concern the framing and sampling of the

participants. Our recruitment strategy could have incurred a

possible selection bias (for example, a high probability of

profile similarity among the respondents). However, we believe

that the issues analyzed are not affected by this threat; the

sample size is large and there is variety in the roles and

nationalities of respondents. Another threat derives from the

channel used to survey maintainers; the questions may have

been answered by respondents who did not have the knowledge

required to do so. We attempted to address this issue when we

defined the protocol of the survey: we explicitly required the

survey to be filled in by ICT professionals (the target roles

were specified) involved in the maintenanceof software

systems (the definition of maintenance was provided). Another

negative factor could have been the difficulty involved in

understanding the questions (e.g., ambiguous, unclear, not

well-formulated), and the respondents’ motivations might also

have affected the answers and thus the survey results. In web-

based surveys the sampling procedure makes it possible to

select duplicate units; one person might answer the survey

more than once. We addressed this threat by using a system

consisting of a single link per person. The reader may also

object that the companies within our industrial network might

also have influenced the internal validity, and that several

people from the same company may have answered the survey,

thus biasing the results.

External validity: To interpret the results we obtained

correctly, it should be borne in mind that, although the

demographics of our sample are fairly diverse, generalizing our

results to the entire population may not be appropriate. In our

survey, the companies belonged to a variety of domains and

covered different company sizes in various countries

throughout the world; we cannot be certain that our sample is

representative of the ICT industry in general, however. These

threats are always present in industrial surveys.

V. CONCLUSIONS AND FUTURE WORK

This paper reports the findings of a survey on the use of

UML in software maintenance to which178 ICT professionals

responded. The main findings, grouped by RQs, are:

- RQ1: Is UML documentation used to support software

maintenance in industry? 59% of those surveyed use a

graphical notation (43% UML; 16% another notation) as a

complement in trying to understand the system that will be

maintained. In contrast, 28% of the respondents use only

source code; they consider that source code and its comments

are the most important artifacts in understanding the system to

be maintained. It is quite surprising that maintainers do not

always use the UML diagrams that are available from the

development phase. This might be due to problems of a lack of

synchronization caused by non-updated diagrams.

- RQ2: What are the perceived benefits of using UML

during software maintenance?The main reasons for using UML

are that less time is needed for a better understanding of the

system under maintenance; this improves defect detection.

Reasons given for not using UML are that maintainers follow

other standards provided by their companies or that they prefer

to work directly with source code. Moreover, when UML

diagrams are available as part of the documentation, it takes

less effort to consult them. That might explain why more

maintainers do not use the documentation in the group whose

documentation contains UML than in the group whose

documentation does not.

- RQ3: What kinds of companies use UML documentation

in software maintenance? The size of the maintenance team

appears to influence the use of UML. Larger teams use UML

diagrams more frequently, proportionately, perhaps because of

the improvement to the understanding of the system provided

by UML diagrams and due to the need to share/communicate

knowledge in this kind of teams. The size of the system being

maintained also seems to be an influential factor. The results

obtained show that UML diagrams are extremely popular when

the team has to maintain a very big system. This seems to be

logical, since one of the reasons put forward for using UML (or

models) is that it helps manage large and/or complicated

systems.

Regarding additional results for characteristics of

companies, we should note that geo-distributed maintenance

teams are common (50% of the cases), although this is not

influential in UML use. Moreover, the most common type of

maintenance is evolutive. It is also noteworthy that

maintenance tasks seem to be carried out by those who already

have experience in ICT, i.e., they have worked in development

before maintenance (first they learn to create it, and then they

learn to change it).

Moreover, and surprisingly, Visio is the most commonly-

used tool for UML modeling, although it is not specific to

UML. It is followed by Enterprise Architect (licensed tool) and

StarUML (open source tool).

- RQ4: Which subset of UML diagram types has been

demonstrated to be most widely-used and effective during

software maintenance?As expected, the UML diagrams that are

used most frequently during software maintenance are class

diagrams, use case diagrams, sequence diagrams and activity

diagrams.

UML diagrams are used most frequently by architects

(54%), SW analysts (30%) and managers (39%). But 40% of

programmers use UML diagrams for software maintenance

tasks, implying that the investment made by architects when

creating UML diagrams has a payback: improvement of

300

maintainer understanding. We noted, however, that there are

some (1%) maintainers who do not have diagrams available

from the development phase. In other cases, there are some

maintainers (23%) for whom diagrams are available, but never

used. This study also revealed that the educational level seems

to be an influential factor as regards the use or not of UML.

Apparently, the higher the education level, the greater the use

of UML diagrams.

Additionally, and in relation to UML documentation, a

majorityuseUML diagrams that are human-based diagrams

(81%). The rest use UML diagrams generated using RE with a

tool: 3% use pure RE diagrams, while 19% use RE UML

diagrams reviewed by humans.

The results of this survey might be beneficial for helping

companies see how to invest in making the systems being

maintained easier to understand. These results give us grounds

to encourage software developers, albeit with caution, to

develop UML diagrams in the early stages of software

development. That would facilitate future maintenance tasks,

encouraging maintainers to keep diagrams updated.

These findings are a first approach to discovering the

contexts in which companies use UML during software

maintenance; we plan to investigate this topic in greater depth.

This future work might take the form of a survey that includes

open questions or interviews. We also wish to extend our

investigation to involve industries that do not belong to our

industrial contact networks.

ACKNOWLEDGMENTS

This work has been funded by the following projects:

GEODAS-BC (Ministerio de Economía y Competitividad and

Fondo Europeo de Desarrollo Regional FEDER, TIN2012-

37493-C03-01) and IMPACTUM (Consejería de Educación,

Ciencia y Cultura de la Junta de Comunidades de Castilla La

Mancha, y Fondo Europeo de Desarrollo Regional FEDER,

PEII11-0330-4414).

REFERENCES

[1] OMG, “The Unified Modeling Language. Documents

associated with UML version 2.3,” 2010. [Online].

Available: http://www.omg.org/spec/UML/2.3.

[2] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic

empirical evaluation of the costs and benefits of UML in

software maintenance,” IEEE TSE, vol. 34, no. 3, pp.

407–432, 2008.

[3] G. Scanniello, C. Gravino, and G. Tortora, “Investigating

the Role of UML in the Software Modeling and

Maintenance - A Preliminary Industrial Survey,” in

Proceedings of the ICEIS’2010, Funchal, Madeira,

Portugal, 2010, vol. 3, pp. 141–148.

[4] A. M. Fernández-Sáez, M. R. V. Chaudron, and M.

Genero, “Exploring Costs and Benefits of Using UML on

Maintenance: Preliminary Findings of a Case Study in a

Large IT Department,” in Proceedings of

EESSMoD´2013, celebrated within MODELS’2011,

2013, pp. 33–42.

[5] A. Pinsonneault and K. L. Kraemer, “Survey research

methodology in management information systems: an

assessment,” Journal of Management Information

Systems - Special section: Strategic and competitive

information systems, vol. 10, no. 2, pp. 75–105, 1993.

[6] B. A. Kitchenham and S. L. Pfleeger, “Principles of

survey research part 2: designing a survey,” ACM

SIGSOFT Software Engineering Notes, vol. 27, no. 1, pp.

18–20, 2002.

[7] E. B. Swanson, “The dimensions of maintenance,” in

Proceedings of ICSE 1976, San Francisco, California,

United States, 1976, pp. 492–497.

[8] L. T. W. Agner, I. W. Soares, P. C. Stadzisz, and J. M.

Simão, “A Brazilian survey on UML and model-driven

practices for embedded software development,” Journal

of Systems and Software, vol. 86, no. 4, pp. 997–1005,

2013.

[9] F. Tomassetti, M. Torchiano, A. Tiso, F. Ricca, and G.

Reggio, “Maturity of software modelling and model

driven engineering: A survey in the Italian industry,” in

in Proceedings ofEASE 2012, 2012, pp. 91–100.

[10] SurveyMonkey, “http://www.surveymonkey.com.” .

[11] M. Grossman, J. E. Aronson, and R. V. McCarthy, “Does

UML make the grade? Insights from the software

development community,” Information and Software

Technology, vol. 47, no. 6, pp. 383–397, Apr. 2005.

[12] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-

driven engineering practices in industry: Social,

organizational and managerial factors that lead to success

or failure,” Science of Computer Programming.

[13] M. Petre, “UML in practice,” in Proceedings of

ICSE’2013, San Francisco, USA, 2013, pp. 722–731.

[14] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira,

“A study of the documentation essential to software

maintenance,” in Proceedings SIGDOC’2005, 2005, pp.

68–75.

[15] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G.

Reggio, “Preliminary Findings from a Survey on the MD

State of the Practice,” in Proceedings of ESEM 2011,

2011, pp. 372–375.

[16] A. Nugroho and M. R. V. Chaudron, “A survey into the

rigor of UML use and its perceived impact on quality and

productivity,” in Proceedings of ESEM 2008, 2008, pp.

90–99.

[17] B. Dobing and J. Parsons, “How UML is used,”

Communications of the ACM, vol. 49, no. 5, pp. 109–

113, 2006.

[18] A. M. Fernández-Sáez, M. Genero, M. R. V. Chaudron,

D. Caivano, and I. Ramos, “Are Forward Designed or

Reverse-Engineered UML diagrams more helpful for

code maintenance?: A family of experiments,”

Information and Software Technology, vol. 57, no. 1, pp.

644–663, 2015.

[19] E. Tryggeseth, “Report from an Experiment: Impact of

Documentation on Maintenance,” Journal of Empirical

Software Engineering, vol. 2, no. 2, pp. 201–207, 1997.

301

